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Gravitating shells lead to simple minisuperspace models of black hole formation
by gravitational collapse of matter. I interpret here the HaÂjõÂcÏ ek±Kijowski
variational principle for spacetime with a shell as a Dirac±ADM action principle
along a timelike foliation including the shell as a leaf. By reducing this action
by spherical symmetry, I obtain the Hamiltonian constraint of a collapsing dust
shell and use it as a prelude to canonical quantization.

1. SOUTHERN AND NORTHERN CONE VIEWPOINTS

Mnemonics are wonderful devices for remembering elusive trivialities.
As I was leaving Salt Lake City for Bariloche, the crescent moon hung like

a letter C on the evening sky. Almost every language has a mnemonic for

remembering the phases of the Moon by their resemblance to some letters

of the alphabet. In Czech, the Moon which makes C on the sky CouvaÂ, it is

waning. Latin, however, has the mnemonic upside down:

Perfida luna: Decrescendo Crescit, Crescendo Decrescit.

Deceitful Moon: When she pretends to wane, she waxes, when she
pretends to wax, she wanes. The boldface letter with which the Latin word

describing the phase begins is exactly opposite to the sans serif shape of the

Moon on the sky. The Moon is double-crossing us.

Last evening, as I was returning from the dinner to my room, I noticed

something strange: the waning moon which day before had hung like C on

the sky in Salt Lake City was shaped like D on the Bariloche sky. Mnemonics
should depend on the hemisphere. Did the Romans when they turned Italians

and emigrated to Argentina conclude that the Moon became trustworthy? I
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doubt it. They probably concluded that the Moon is as deceitful as ever and

that she is merely double-double crossing them.

I want to thank the organizers of this meeting on behalf of all of us
from the North for the chance to view celestial physics from the Southern

perspective. In spacetime, such a switch would correspond to turning the

lightcone upside down. I my talk, I want to explore a less dramatic change

of direction in the sublunary physics of canonical gravity. What I have to

say is associated with viewing the production of a black hole spacetime by

spherically collapsing shell not as a vertical evolution from the past to the
future, but rather as a horizontal canonical process in the spacelike direction

perpendicular to the shell history. I, a Northerner lecturing about dynamics

in the Southern Cone, am offering to meet my listeners half the way: Let us

view together the spacetime dynamics as if it occurs along the equator.

2. MATTER SHELLS AS MODELS OF THE GRAVITATIONAL
COLLAPSE

Evaporation of black holes by Hawking radiation is a semiclassical effect

which should ultimately be described by quantum gravity. A complementary

process is the formation of a quantum black hole by the gravitational collapse
of quantized matter. While modeling the Hawking radiation in canonical

quantum gravity requires quantum field theory (a midisuperspace model),

gravitational collapse can be studied on quantum systems with a finite number

of degrees of freedom (minisuperspace models). The simplest example of

such models are spherically symmetric thin shells.

One can guess a Lagrangian which yields the known equations of motion
of the shell and use it for quantizing that motion. For a dust shell, this was

done by HaÂjõÂcÏ ek, Kay and KucharÏ [1] and for different types of shells by a

number of people in a number of ways.2 An uneasiness with such a shortcut

to quantization arises from ambiguities inherent in the inverse problem of

the calculus of variations [4].3 One can limit such ambiguities by additional

requirements [7], but the uneasiness persists. To root the super-Hamiltonian
of a highly specialized system in the bedrock of first principles, one should

be able to obtain it by consistently reducing a variational principle of the

general system.

2 Spherical vacuum shells are treated, e.g., in refs. 2. The quantization of false vacuum bubbles
is discussed using the Dirac formalism and the WKB approximation in ref. 3. The treatment
of Kraus and Wilczek [20] follows the methods of ref. 3.

3 Refs. 1 and 5 contain four examples of very different Lagrangians that all describe the same
system of a spherically symmetric massive dust shell. They are classically equivalent in the
sense that there are smooth transformations between them, but the quantum theories are not
unitarily equivalent. An example of two Lagrangians that lead to the same equations of motion
but are even classically inequivalent is given in ref. 6.
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HaÂjõÂcÏ ek and Kijowski [8] have recently formulated such a variational

principle which yields in one stroke the dynamics of the matter within a

shell, the dynamics of the shell in a surrounding spacetime, and geometrody-
namics of that spacetime. For a spherically symmetric shell, neither the flat

interior nor the curved exterior of the shell have their own dynamical degrees

of freedom. The Schwarzwschild mass of the exterior is determined from

the dynamics of the matter variables (reduced to a finite number by spherical

symmetry) and the dynamics of the intrinsic geometry of the shellÐ the

change of its area coordinate R. Spherical reduction of the HaÂjõÂcÏ ek±Kijowski
action then yields a unique shell action which describes the internal dynamics

of the shell’ s matter and geometry. This can be taken as a basis for the Dirac

constraint quantization of the gravitational collapse.

I shall interpret here the HaÂjõÂcÏ ek±Kijowski variational principle as a

Dirac±ADM action principle along a timelike foliation including the shell as

a leaf. I show how this formulation simplifies the spherical reduction to the
shell action. I also show how to write the Lagrangian of the simplest conceiv-

able material of the shell, an incoherent dust, in a form in which the rest

mass density of the dust and proper time along the dust worldlines appear

as conjugate canonical variables. The quantum constraint for a spherically

symmetric dust shell then naturally yields a SchroÈ dinger equation for the
dynamics of the shell geometry.

3. SHELL DYNAMICS FROM ISRAEL’S JUNCTION
CONDITION

Any contemporary treatment of the shell motion in general relativity is

likely to start from a junction condition found by Dautcourt [9] and cast in
an elegant geometric form by Israel [10].

Envisage a shell of matter which moves in an empty Ricci-flat spacetime.

Figure 1 shows a closed shell S which divides the spacetime (}, g ) into an

interior (} 2 , g 2 ) and exterior (}+, g +) regions. Israel’ s description of how

to join } 2 to }+ across the shell is entirely given in terms of geometric

quantities. Coordinate patches X 6 a , a 5 0, 1, 2, 3, and x a, a 5 0, 1, 2, which
are used in the spacetimes } 6 and on the shell S may be arbitrary and

mutually independent. The way in which the shell moves in the interior and

exterior spacetimes is described by the embedding functions

X 6 a 5 X 6 a (x a) (1)

Israel’ s first condition (the continuity condition) is the requirement that

the intrinsic metric gab(x) on S be the same whether it is induced by the

interior spacetime metric g 2
a b or the exterior spacetime metric g 1

a b :
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Fig. 1. A closed shell ( S , g) with interior (} 2 , g 2 ) and exterior (}+, g +). The normal n points

from } 2 to }+. The extrinsic curvature Kab characterizes the bending of the shell in }.

g 2
a b (X 2 (x))X 2 a

,a(x)X 2 b
,b(x) 5 gab(x) 5 g 1

a b (X+(x))X 1 a
,a(x)X 1 b

,b(x) (2)

The matter on the shell is characterized by an energy-momentum tensor

T ab(x) whose covariant divergence with respect to the intrinsic metric

vanishes:

T ab
| b(x) 5 0 (3)

The second junction condition tells us how the extrinsic curvature

Kab(x) : 5 2 n a ; b X a
,a X b

,b (4)

changes when we pass from the interior of the shell to its exterior. It connects

the jump [ ] of the contravariant tensor density

pab(x) : 5 | g | 1/2(Kgab 2 Kab) (5)

constructed from the intrinsic metric gab and extrinsic curvature Kab of S to

the energy-momentum tensor on the shell,4

4 Before going on, I need to explain my use of units. In canonical geometrodynami cs, to avoid
inconvenient factors in the Hamiltonian constraint, one introduces natural units in which c 5
1 and the Einstein constant of gravitation k is put equal to 1/2. I use these units in all general
equations of this paper. Thus, the factor 1/2 on the right side of Eq. (6) is just the Einstein
constant k . However, once I reduce the canonical action by spherical symmetry, such a choice
of natural units brings inconvenient 4 p factors by integrations over the unit sphere. To avoid
such factors, I then switch to natural units in which the Newton constant of gravitation G is
put equal to 1: G 5 1.
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2 [pab] : 5 2 ( p 2
ab 2 p 1

ab) 5
1

2
| g | 1/2T ab (6)

On a spacelike hypersurface, the expression (5) represents the Dirac±

ADM (Arnowitt, Deser, and Misner) gravitational momentum. Of course, the
shell history S is a timelike rather than a spacelike hypersurface. Nevertheless,

the canonical perspective is a handy tool in all our considerations.

The Israel junction condition implies both how the matter moves within

the shell and how the shell moves in the embedding spacetime. The motion

of the matter is given by the conservation law (3), which follows from the

junction condition (6) by virtue of the Gauss±Coddazi equation

pab
| b 5 0 (7)

That the motion of the shell also follows from the Israel junction condition
is an example of the general fact that Einstein’ s field equations imply the

equations of motion of the field `singularities’ [11]. We shall see later how

this happens in the context of the Hamiltonian theory of a spherical shell.

In spite of the fact that the Israel junction condition (6) tells us all that

we need to know about the motion of the shell and its matter, it does not

tell us enough to quantize this motion. Quantization does not work at the
level of equations of motion, but requires the knowledge of the Lagrangian

or the Hamiltonian of the system. The problem with the Israel formulation

as a basis for quantum theory is that neither the dynamics of matter within

the shell nor the junction condition itself are obtained from an action principle.

4. HILBERT ACTION AND THE DIRAC ± ADM ACTION

To explain how to solve these difficulties, I need to remind you of two

alternative forms of the action principle for Einstein’ s equations. It has been

known ab urbe condita [12] that the vacuum Einstein equations follow from

the Hilbert action

SH[ g ] 5 # d 4X | g | 1/2R(x; g ] (8)

by varying the spacetime metric g a b in a compact region of spacetime. It

took, however, some time to understand what happens if the variation does

not vanish at the boundary S 5 - } of region } [13]. In this case, the

variation of the Hilbert action acquires a boundary term which is the Liouville

form in the variation of the gravitational momentum:

d SH[ g ] 5 2 # }

d 4X | g | 1/2G a b d g a b 2 # S

d 3x gab d pab (9)

The spacetime metric in the Hilbert action must be varied so that pab on the
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boundary (i.e., the normal derivative of the induced metric gab) is kept fixed.

Otherwise, the variation of the momentum pab on S would force on us a

blatantly unnatural `natural’ boundary condition gab 5 0. On the other hand,
the variation does not need to limit in any way the change of the induced

metric gab. The Hilbert action is thus geared to the Neumann boundary

conditions on S .

To get the form of the action adapted to the Dirichlet boundary conditions,

one needs to amend SH by a surface term:

SG[ g ] : 5 SH[ g ] 1 # S

d 3x p (10)

The terms obtained by varying the trace p 5 gab pab of the gravitational
momentum exactly cancel the boundary term in the variation (9) of SH and

introduce the Dirichlet type boundary term in the variation of the gravitational

action SG[ g ]:

d SG[ g ] 5 2 # }

d 4X | g | 1/2G a b d g a b 1 # S

d 3x pab d gab (11)

To avoid an unwanted `natural’ boundary condition pab 5 0, one must

now vary the spacetime metric close to the boundary so that the induced
metric gab on S is kept fixed. In exchange, no a priori limitation needs to

be imposed on how the normal derivatives pab of the induced metric can

change. This is why the new form (10) of the action is suitable for deriving the

Israel junction condition (6) for the momenta pab from a variational principle.

The gravitational action (10) is well known to people working in canoni-

cal gravity. When expressed along a foliation of } by spacelike hypersurfaces
S t , it is exactly the Lagrangian form of the Dirac±ADM action.

5. ISRAEL’S JUNCTION CONDITION FROM AN ACTION
PRINCIPLE

I now want to apply a variational principle to a boundary which is not

an arbitrarily prescribed hypersurface, but which is physically delineated by

the motion of a thin layer of matter. Such matter may be phenomenological

(dust, fluid, or elastic medium) or it may be a more fundamental tensor
field (scalar field, electromagnetic field, or combination of coupled fields)

ordinarily considered in a four-dimensional spacetime.

The action describing the propagation of phenomenological matter or

fields within the shell is supposed to be given in a Lagrangian form
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SM
S 5 # S

d 3x LM[g, F ] (12)

The Lagrangian LM[g, F ] is a scalar density under Diff S constructed from

the intrinsic metric gab of S , the matter fields F , and the derivatives of gab

and F on S up to a finite order. I explicitly assume that the propagation of

the fields within S depends only on the intrinsic metric of S , not on the
bending of S in } 2 or }+.

By varying SM
S with respect to the fields, we obtain the field equations.

As in a four-dimensional spacetime, the symmetric energy-momentum tensor

of matter fields is given by the variational derivative of the matter action

with respect to the intrinsic metric on S :

T ab(x) : 5 2 | g | 2 1/2 d SM
S

d gab(x)
(13)

Dust coupled to gravity is an especially handy conceptual tool for inter-

preting quantum dynamics [14]. After spherical minisuperspace reduction,

the Hamiltonian constraint for the dust shell naturally assumes the form of

a SchroÈ dinger equation. For the Lagrangian of the shell, I take the three-
dimensional version of a Lagrangian introduced by Brown [15]. The dust

shell is described by six scalar fields which I call

T(x), Z k(x); r (x), Wk(x), with k 5 1, 2 (14)

The functions T(x) and Z k(x) are assumed to be independent, i.e., their

gradients T,a(x), Z k
,a(x) must form a cobasis in T* S . The Lagrangian has

the form

LD 5 2
1

2
| g | 1/2 r (gabUaUb 1 1) (15)

where the velocity covector Ua is a Pfaff form constructed from the Clebsch

potentials T(x), Z k(x), and Wk(x):

Ua : 5 2 T,a 1 Wk Z k
,a (16)

The equations of motion obtained by varying the potentials (14) shed

light on their physical meaning: The scalars Z k(x) are two comoving coordi-

nates labeling the dust worldlines within the shell, T(x) is the proper time
along those worldlines, Wk(x) are the normal projections of the velocity Ua

onto surfaces of constant T expressed in the comoving basis, and r (x) is the

surface density of the rest mass of the dust on the shell. The Euler±Lagrange

equations imply that flowlines of Ua are geodesics of the shell metric gab

and that the rest mass satisfies the continuity equation ( r Ua) | a 5 0. Moreover,
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the variation of the shell action gives by Eq. (13) the standard energy-

momentum tensor

T ab 5 r UaUb (17)

of the dust.

This solves the first problem presented by the Israel junction condition

as a would-be basis for quantization: The action (12) in general and the dust

shell action (15) in particular provide all information about the propagation

of matter fields on S . However, we still lack a variational principle determin-
ing the motion of the shell in the surrounding spacetime, i.e., giving the rules

according to which ( S , g) is embedded in (} 2 , g 2 ) and (}+, g +). Such a

principle was introduced by HaÂjõÂcÏ ek and Kijowski [8]. I formulate it here

directly in terms of the Dirac±ADM gravitational action:

The fields F (x) on the shell, the shell metric gab on S , and the metrics
g 6

a b (X 6 ) in } 6 extremize the action

S[ g 6 , g, F ] 5 SG
1 [ g +] 1 SG

2 [ g 2 ] 1 SM
S [g, F ] (18)

when g and g 6 are varied under the auxiliary continuity condition (2).

The variational formula (11) for the gravitational action enables me to

explain immediately how this principle works. The variation of Eq. (18) yields

d S 5 2 # } 2
d 4X 2 | g 2 | 1/2G 2 a b (X 2 ) d g 2

a b (X 2 )

2 # }
1

d 4X+ | g + | 1/2G 1 a b (X+) d g 1
a b (X+)

1 # S

d 3x [ pab(x)] d gab(x) 1 # S

d 3x
1

2
| g | 1/2T ab(x) d gab(x) (19)

(Because we agreed to orient both normals n 6 from } 2 to }+, the normal

n+ is oriented into }+ and p 1 ab thus appears with the minus sign in the jump

[ pab(x)] 5 pab
2 (x) 2 pab

1 (x).)
The variation of the spacetime metric in } 6 yields the Einstein law in

vacuum regions:

G 6 a b (X 6 ) 5 0 (20)

The variation of the intrinsic metric gab on S dutifully reproduces the Israel
junction condition (6).

So far, the action principle (18) has the Lagrangian form and geometry

is specified by the metrics g 6 and g. The momentum variables are mere

abbreviations for the expressions (4)±(5). However, I have already noticed
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that the gravitational action SG is naturally connected with the Dirac±ADM

action. This suggests that one can incorporate the shell history X(x) into a

foliation Xr(x) of spacetime by timelike hypersurfaces

Xr: R 3 S ® } by r P R , x P S j X 5 X(r, x) P }

(21)

and vary the action in the canonical form. I freely use this point of view in

the following discussion. To cross its t’ s and dot its i’ s requires, of course,
a more detailed presentation [16].

6. SPHERICAL REDUCTION

I now reduce the shell action (18) by spherical symmetry. My approach

is distinguished from previous treatments of the same problem by reducing
the Dirac±ADM action along a timelike foliation including the shell. In this

way, one gains a fresh insight into why and how the dynamics is carried not

by the whole spacetime, but merely by the shell.

The three kinds of objects which need to be reduced by spherical symme-

try are the shell geometry, the spacetime geometry, and matter fields on the

shell. Their reduced form allows me to proceed with the spherical reduction
of the matter shell action and canonical gravitational action.

6.1. Spherical Reduction of the Shell Geometry

I label the events on a history S of a spherically symmetric shell by

arbitrary coordinates j m, m 5 1, 2, of the homogeneous S 2 sections [say, by the
standard spherical coordinates j m 5 ( u , w )], and by an arbitrary monotonically

growing time label t along the j m 5 const generators. The geometry of S
then takes the form

d s 2 5 2 L 2(t) dt2 1 R2(t) d V 2 (22)

where d V 2 5 V mnd j md j n is the geometry of unit sphere. The intrinsic metric
gab(x) of the shell is thereby reduced to two functions, R(t) and L (t), of a

single coordinate, the label time t. The variable R is determined by the

instantaneous proper area of the shell. When one changes t in the line element

(22), R(t) transforms as a scalar. The second metric coefficient, L (t), deter-

mines the proper time

d t 5 L (t) dt (23)

along generators of the shell history. The proper time t , like the label time

t, grows from the past to the future and hence L (t) . 0. When one transforms

t, L (t) behaves as a scalar density.
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6.2. Spherical Reduction of the Matter Shell Fields

Superficially, it may seem that spherical symmetry demands that the six

dust potentials (14) do not depend on the angular variables j m, and hence

reduce to some arbitrary functions of the time label t. However, that would

violate the condition that the reduced covectors T,a , Z k
,a be linearly indepen-

dent. For dust to be in a spherically symmetric fall, its particles must be
pegged to fixed locations j of the spherical shell. To achieve that, one should

take Z k(x) to be fixed functions of coordinates j m and prohibit their dependence

on t: Z k 5 Z k( j m), e.g., Z k 5 j k. These functions cannot be varied and hence

lose their role of field variables in the reduced action. Because dust particles

cannot move along the sphere, but only radially fall with it, the projection

of their velocity into the sphere must vanish: Wk 5 0. I conclude that the
appropriate reduction of the dust variables is

T 5 T(t), r 5 r (t); Z k 5 Z k( j m), Wk 5 0 (24)

The dust Lagrangian (15) then depends only on two scalar variables T(t)
and r (t).

6.3. Spherical Reduction of the Dust Shell Action

The reduced form (24) of the dust variables leaves U t 5 2 TÇ (t) as the

only surviving component of the Pfaff form (16). Because

| g | 1/2 5 | V | 1/2R2 L and gtt 5 2 L 2 (25)

the dust Lagrangian reduces to

LD( L , R; r , TÇ) 5
1

2
r R2 | V | 1/2( L 2 1TÇ2 2 L ) (26)

When I integrate it over the unit sphere and replace the multiplier r (t) by

the total rest mass multiplier

M(t) : 5 4 p R2(t) r (t) (27)

I arrive at the dust shell action

SD
S [ L ; M, T] 5 # dt

1

2
M( L 2 1TÇ2 2 L ) (28)

6.4. Spherical Reduction of the Spacetime Gravitational Action

Spherical reduction of the shell geometry replaced the intrinsic metric

gab by two functions L and R of a single variable, the label time t. Similarly,

spherical reduction of the spacetime geometry replaces g a b by four functions
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of two variables, the time label t and a radial label r. When we substitute

these functions into the gravitational action and vary them so that they match

a given shell metric L , R, we get the vacuum Einstein equations in } 6 .
Their solution gives a Minkowski spacetime inside a collapsing shell, and a

Schwarzschild solution corresponding to some constant Schwarzschild mass

M outside the shell. This procedure for obtaining the Schwarzschild solution

from the action principle reduced by spherical symmetry essentially follows

the outlines devised by Weyl [17].

Substitute now this solution of the bulk Einstein equations into the
gravitational action and vary the intrinsic metric gab on S . Because the

bulk equations are satisfied, the variational formula (19) retains only the

boundary term

d SG 5 # S

d 3x [ pab] d gab (29)

5 # S

dt ([ P L ] d L 1 [ P R] d R) (30)

Because the metric is limited by spherical symmetry, the general formula

(29) is reduced to variations of the two metric coefficients L and R multiplied

by the corresponding momenta [ P L ] and [ P R].
I can use the bulk solutions (the Minkowski and Schwarzschild space-

times) to obtain the coefficients P L and P R. To explain their meaning, I

evoke the canonical version of the gravitational action along a timelike

foliation including the shell history:

The momentum constraint (7) is reduced by spherical symmetry to

the statement

P RRÇ 2 L P Ç L 5 0 (31)

To obtain Eq. (31) does not require any calculation: the form of its left
side is dictated by the fact that R is a scalar and L a scalar density under

diffeomorphisms of t which the constraint (31) is supposed to generate [18].

From Eq. (31) it follows that the first momentum coefficient completely

determines the second:

P R 5 V 2 1 P Ç L (32)

The scalar

V : 5 RÇ / L (33)

is dynamically so important that it deserves a name. It is the rate of change

of the invariantly defined area coordinate R with proper time along the shell

history S . I call V the proper velocity of the shell.
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The remaining coefficient P L is a key to the shell dynamics. Its meaning

can be inferred from Eq. (5) restricted by spherical symmetry: One learns

that 8 p P L is the rate at which the area of the 2-spheres grows in the direction
n normal to the shell history S , i.e.,

P L 5
1

2
- nR2 (34)

In the Schwarzschild solution, this rate can be expressed in terms of the area

coordinate R and the proper velocity V of the shell. I write the resulting

formula in the static quadrant of the Kruskal diagram where R increases in
the direction of n:

P L 5 R ! F 1 V 2 (35)

The function

F(R, M ) : 5 1 2 2M/R (36)

is an abbreviation for the combination of R and M variables which naturally

appears in the Schwarzschild solution written in curvature coordinates. (In

the dynamical quadrants F , 0, R can either decrease or increase along n.
To keep track of the signs and cover all relevant quadrants is vital, but I will

write here the explicit formulas only for the static quadrant.) In the Minkowski

spacetime interior of the shell F 5 1.

7. REDUCTION OF SPACETIME ACTION TO SHELL ACTION

I am now going to argue that the boundary term (30) can be expressed

as the variation of a gravitational shell action

SG
S [ L , R] 5 # S

dt LG
S ( L , R, RÇ ) 5 # S

dt L L(R, V ) (37)

which is a functional of the intrinsic metric L , R of the shell. In other words,
I claim that the variational differential form (30) is exact.

The shell action SG must be invariant under diffeomorphisms of the

label time t, i.e., the Lagrangian LG
S ( L , R, RÇ ) must be a homogeneous function

of the variables L and RÇ . The most general homogeneous Lagrangian is

L L(R, V ), which explains the last form of Eq. (37).

By comparing the expressions (30) and (37), I get two equations for
LG

S :

E L : 5 LG
S , L 5 L 2 L,VV 5 R [ ! F 1 V 2] (38)
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and

ER : 5 LG
S ,R 2 (LG

S ,RÇ )
x 5 V 2 1[ P L ]x (39)

where E L and ER are the Euler±Lagrange expressions of LG
S . Because the

Lagrangian LG
S is homogeneous, the Euler identity implies that the second

equation follows from the first. Hence, the problem reduces to the solution

of a single differential equation (38), which amounts to a familiar task of

the Legendre transform procedure: To find the Lagrangian L from its energy

function L,VV 2 L 5 2 R[ ! F 1 V 2]. This task has the solution

L 5 R [ ! F 1 V 2 2 V sinh 2 1(F 2 1/2V )] (40)

which again holds in the static quadrant of the Kruskal diagram. (In dynamical
quadrants, one needs to replace sinh by cosh and change some signs.)

I have thus showed that the boundary term (30) is the variation of the

gravitational shell action (37) with the scalar Lagrangian (40).

8. TOTAL SHELL ACTION

The total shell action S S [ L , R; T, M] consists of the gravitational part

(37), (40) and the dust part (28):

S S [ L , R; T, M] 5 SG
S [ L , R] 1 SD

S [ L ; T, M] (41)

Its variation in the metric variables L , R and the matter variables T, M gives

the internal dynamics of geometry and matter of the shell. In particular, by

varying T, I check that M is a constant of motion, by varying M, I check

that the lapse function is the rate of change of the proper time with the label
time, L 5 TÇ , and by varying L , I get the conservation law

! 1 1 V 2 2 ! F 1 V 2 5
M
R

(42)

By integrating Eq. (42), I could find how the area coordinate changes with
proper time: R 5 R(T).

Unlike the rest mass M(t) of the shell, the Schwarzschild mass enters

the shell action S S as a constant. Quite remarkably, one can turn M into

a dynamical variable M(t) when extending the action S S by yet another

variable T(t):

S S [ L , R; T, M; T, M ] 5 2 # dt MTÇ 1 SG
S [ L , R, M ]

1 SD
S [ L ; T, M] (43)
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By varying the extended action with respect to T, I show that M is actually

a constant of motion. By varying it with respect to M, I get the relation

TÇ 5 L F 2 1 ! F 1 V 2 (44)

which reveals the meaning of the variable T(t): Eq. (44) is a valid equation

for the rate of change of the Killing time T of the exterior Schwarzschild
solution along the shell history. The extended action thus gives not only the

internal dynamics of the shell, but also its equation of motion in the exterior

spacetime. This illustrates my previous statement that the Israel junction

condition leads to the equations of motion of the shell.

To quantize the internal and external dynamics of the shell, I must cast

the extended shell action in canonical form. Let me do it first for the dust
part. By introducing the momentum P conjugate to T and performing the

Legendre dual transformation, I get

SD
S [ L , M; T, P] 5 # dt 1 PTÇ2 L

1

2
(M 2 1P2 1 M) 2 (45)

The variables L and M are Lagrange multipliers. By varying the action with
respect to M, I find that the rest mass M is identical with the momentum P:

M 5 P. By identifying P with M in Eq. (45), I cast the dust action into

canonical form

SD
S [ L ; T, M] 5 # dt (MTÇ2 L HD) (46)

in the conjugate variables T and M. The Hamiltonian of this action is propor-

tional to M:

HD(T, M) 5 M (47)

Similarly, by introducing the momentum P canonically conjugate to R
and performing the Legendre dual transformation, I could derive the canonical

form of the gravitational action:

SG
S [ L ; R, P; M, T ] 5 # dt (PRÇ 2 MTÇ 2 L HG(R, P)) (48)

The gravitational super-Hamiltonian in the static quadrant of the Kruskal

diagram is

HG(R, P) 5 2 R F ! 1 1 F 2 2F1/2 cosh R 2 1P G (49)

It has been previously obtained by a different reduction process by HaÂjõÂ-

cÏ ek [19].
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The total shell action thus has the generalized Hamiltonian form

S S [ L ; R, P; T, M; T, M ] 5 SG
S [ L ; R, P; T, M ] 1 SD

S [ L ; T, M]

5 # dt (PRÇ 1 MTÇ2 MTÇ 2 L H) (50)

The variation of the lapse multiplier L constrains the super-Hamiltonian

H 5 HD(T, M) 1 HG(R, P; M ) 5 M 2 R F ! 1 1 F 2 2F1/2 cosh R 2 1P G
(51)

to vanish.

9. INNER AND OUTER QUANTUM GEOMETRODYNAMICS OF
A DUST SHELL

The shell action (50) ±(51) contains two times, the proper time T and

the outer Killing time T along the shell; let me call it a double time action.

Both of these times are ignorable (only their derivatives TÇand TÇ appear

in the canonical Lagrangian), and hence the conjugate momenta M and

2 M (the rest mass of the shell and the Shwarzschild mass of the outer
spacetime) are constants of motion. The Dirac constraint quantization of

the motion of the shell calls for the replacement of the conjugate canonical

variables by operators, their substitution into the super-Hamiltonian, and

the imposition of the Hamiltonian constraint as an operator restriction on

the state function C :

HÇC 5 0 (52)

Because the super-Hamiltonian (51) is linear in the proper mass M, the

quantum Hamiltonian constraint (52) written in the (T, R, M ) representation

takes the form of a SchroÈ dinger equation in the proper time T:

i
- C (T; R, M )

- T
5 HG(RÃ, PÃ, MÃ) C (T; R, M ) (53)

If I were able to factor order the operators RÃ, PÃ, and MÃ so that the

gravitational super-Hamiltonian HG(RÃ, PÃ, MÃ) would be a self-adjoint operator,

the SchroÈ dinger equation would give a clear probabilistic interpretation to
the variables R, P, T, and M. Unfortunately, this is not an entirely straightforward

task because of the positivity restrictions on the domains of the variables R
and M and the rather complicated form of H, which requires that one define

the cosh and square root operations by spectral analysis. However,
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modulo these technical difficulties, our shell model can assign a probabilistic

interpretation to the intrinsic geometry operator of the shell history

d s Ã2 5 2 dT2 1 RÃ2(T) d V 2 (54)

in the Heinsenberg picture.

In particular, one can ask how the probability distributions of the Heisen-

berg operators MÃ(T), RÃ(T), or FÃ: 5 1 2 2MÃ(T)/RÃ(T) change with proper time

T. Predictably, the probability distribution of the MÃ(T) operator should not
change at all because the Schwarzschild mass operator is a quantum constant

of motion. By following how the remaining two distributions change with

T one should be able to answer the questions, ª Does the shell ever set below

the horizon?º and, ª If so, does it rise again from below the horizon?º Of

course, the horizon does not have any definite position because the Schwarz-

schild mass is an operator.
The internal geometrodynamics of the shell cannot by itself pose a more

interesting question, namely, ª If the shell rises again from below the horizon,

then where?º To phrase that question, I would need to give some meaning

to the operator of spacetime geometry. Of course, the spacetime geometry

inside the shell should be Minkowskian and the spacetime geometry outside
the shell should be described by the Schwarzschild line element in which M

is replaced by the operator MÃ. However, in quantum theory one cannot say

where the Minkowskian geometry ends and the Schwarzschild geometry

begins because the position of the shell in the respective spacetimes is uncer-

tain [we have seen that the location of the shell in the external Schwarzschild

spacetime is also described by operators, namely, by RÃ(T) and TÃ(T)]. It is
thus conceptually quite tricky to define the operator of spacetime geometry.

I consider the minisuperspace shell model quite fascinating because it

can help us to formulate and answer these and other relevant questions

about the formation of a quantum black hole by the gravitational collapse of

quantum matter.
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